1.智利铜矿丰富的原因和智利北部农业分布特点?

2.矾土和粘土有什么不一样的?

3.甲酸钠的生产工艺

4.煤的物理性质

5.石头的分类。有分

矿物质导热油和合成导热油的区别_山西矿物导热油价钱

蜡状面膜适合什么皮肤?这是一个关于面膜选择的问题,想必很多人都会面临这个难题。不同的皮肤状况需要不同的保养方式,所以在选择面膜时要根据自己的皮肤类型做出正确的选择。

我们来了解一下什么是蜡状面膜。蜡状面膜是一种质地较厚、呈现蜡状质地的面膜产品。它通常富含天然或合成的蜡类成分,如蜂蜡、羊毛脂等,具有保湿、滋润和修复肌肤的功效。由于其质地较为厚重,使用时需要较长时间才能完全干燥。

回到问题本身,蜡状面膜适合什么皮肤?从整体来说,蜡状面膜更适合干性和中性皮肤。由于其保湿滋润的特性,它能够帮助干性和中性皮肤补充水分,并形成锁水屏障,增加皮肤的保湿度。对于受损或者敏感的皮肤,蜡状面膜也能够起到修复和舒缓的作用。

对于油性皮肤和混合性皮肤的人来说,使用蜡状面膜需要小心。因为油性皮肤和混合性皮肤本身就容易出油,蜡状面膜的质地较厚,可能会在使用过程中给皮肤带来油腻感,甚至导致毛孔堵塞。所以,如果你是油性或者混合性皮肤,建议在选择面膜时优先考虑其他类型的产品。

对于敏感性皮肤来说,由于蜡状面膜的质地较重,有些人可能会感到不适或者有过敏反应。所以,在选择使用蜡状面膜时,敏感性皮肤的人需要特别注意产品的成分,并进行过敏测试。

根据以上分析可知,蜡状面膜适合干性和中性皮肤,并可以用于修复受损或者敏感的皮肤。对于油性和混合性皮肤来说,则需要谨慎选择使用。请记住,在购买任何面膜产品之前都要仔细阅读产品说明,以确保选择适合自己皮肤状况的产品。

智利铜矿丰富的原因和智利北部农业分布特点?

1、煤的工业分类中的一些基本概念

①基的概念:基准,前提条件。例如d,ad,daf,dmmf,ar分别代表干燥基、空气干燥基,干燥无灰基、干燥无矿物质基和收到基。

②煤的粘结性。是指煤粒(d<0.2mm)在隔绝空气加热后能否粘结其本身或惰性物质形成块的能力。

③煤的结焦性。是指煤粒隔绝空气加热后能否生成优质焦炭的性质。

④煤的全水分。是煤的外在水分(表面水)和内在水分之和。外在水是空气中干燥失去的水分,剩下的是内在水。

⑤挥发分。空气干燥基煤样在900℃条件下隔绝空气加热7分钟后减少的质量扣除水和二氧化碳的质量。常用干燥无灰基挥发分表示。Vdaf/%

⑥灰分:空气干燥基煤样加热到815℃完全燃烧后残余物的质量。

⑦弹筒发热量。是指单位质量的煤在充有过量氧气的弹筒中燃烧,最终产物为25的二氧化碳、氧气、氮气、硝酸、硫酸、液态水和固态灰时放出的热量。

⑧高位发热量。是指单位质量的煤在充有过量氧气的弹筒中燃烧,最终产物为25的二氧化碳、氧气、氮气、二氧化硫、液态水和固态灰时放出的热量。其数值等于弹筒发热量扣除硝酸和硫酸的形成热。

⑨低位发热量。是指单位质量的煤在充有过量氧气的弹筒中燃烧,最终产物为25的二氧化碳、氧气、氮气、二氧化硫、气态水和固态灰时放出的热量。其数值等于高位发热量扣除水的汽化热。

2、煤的用途

火力发电31%,工业锅炉31%,民用20%,炼焦8%,蒸汽机4%,煤化工3%,出口3%

3、煤的工业分类依据

根据煤化程度指标(挥发分等)和热加工工艺性质(粘结性、发热量等)。

4、中国煤炭分类表及说明

①煤的数码编号说明:十位数表示干燥无灰基挥发分的大小,个位数表示它的粘结性大小。十位数字大,表示挥发分高;个位数字大,表示粘结性高。

②无烟煤分类:3个编号。 类别 编号挥发分Vdaf/% 氢含量Hdaf/% 无烟煤一号 01 老无烟煤 0-3.5 0-2 无烟煤二号 02 典型无烟煤 3.5-6.5 2-3 无烟煤三号 03 新无烟煤 6.5-10 3-4 ③烟煤分类:24个编号

挥发分10-20%,20-28%,28-37%,37%以上,分别为低、中、中高和高挥发分。

粘结指数G 0-5,5-20,20-50,50-65,65以上,分别为不粘、弱粘、中低粘、中高粘和强粘结性。

④褐煤分类:2个编号 类别 编号挥发分Vdaf/% 目视比色法透光率PM 褐煤一号 51 新褐煤 37以上 ≤30 褐煤二号 52 老褐煤 37以上 30-50 ⑤中国煤的分类

14大类:褐煤、长焰煤、不粘煤、弱粘煤、1/2中粘煤、气煤、气肥煤、1/3焦煤、肥煤、焦煤、瘦煤、贫瘦煤、贫煤和无烟煤。

17小类

5、煤的可选性及评价方法

①选煤的概念

利用煤与矿物杂质物理化学性质的不同,设法除去矿物杂质,提高煤质量规格的过程。

②选煤方法

主要是重力选煤,利用煤与矿物杂质密度的不同,采用跳汰选煤或重介质洗煤。

③煤的可选性

把矿物杂质从煤中分离出来达到工业用煤要求的难易程度。用±0.1临近密度物产率表示。

④评价方法

筛分试验和浮沉试验。

煤岩学

第一节 宏观煤岩组成及煤的物理性质

1、宏观煤岩成分:肉眼可以区分的煤的基本组成单位。

①镜煤。颜色深黑,光泽最强,贝壳状断口,内生裂隙发育,呈条带状或透镜状,由植物的木质纤维组织经凝胶化作用形成,是一种简单的宏观煤岩成分。

②丝炭。颜色灰黑,纤维状结构,丝绢光泽,疏松多孔,被矿物充填后坚硬致密,比重较大,由植物的木质纤维组织经丝炭化作用形成,也是一种简单的宏观煤岩成分。

③亮煤。亮煤是复杂的宏观煤岩成分,由植物的木质纤维组织经凝胶化作用,并掺入一些由风或水带来的矿物杂质形成。光泽和亮度仅次于镜煤,断面平坦,内生裂隙不如镜煤发育,常呈较厚分层,是最常见的宏观煤岩成分。

④暗煤。暗煤是复杂的宏观煤岩成分,富含壳质组、惰质组或矿物质,光泽暗淡,灰黑色,致密坚硬,比重大,韧性大,不易破碎,断面粗糙,一般不发育内生裂隙。较为常见。

2、宏观煤岩类型

按宏观煤岩成分组合及其反映出来的平均光泽强度划分为4种宏观煤岩类型。

①光亮煤。主要由镜煤和亮煤组成(大于80%)。

②半亮煤。亮煤和镜煤占多数(50-80%)。

③半暗煤。亮煤和镜煤占20-50%,硬度、韧性、比重较大。

④暗淡煤。镜煤与亮煤小于20%,硬度、韧性、比重大。

二、煤的物理性质

1、光学性质

①颜色:表色、粉色、体色、反射色、反射荧光色

表色指普通白光照射下煤表面反射的颜色。

粉色指煤研成粉末或用钢针刻划煤表面形成条痕的颜色。又称条痕色。

体色指把煤表面磨光,在显微镜下观察反射光的颜色。

反射荧光色:把煤表面磨光,用蓝光或紫外光激发后呈现的颜色。 煤类 表色 粉色 体色 反射色 反射荧光色 褐煤 褐色 褐色 煤级越高,透光性越差 煤级越高,反射色越浅 煤级越高,荧光色越弱 低阶烟煤 黑色 深褐色    高阶烟煤 黑色 黑色    无烟煤 黑色 深黑色    ②光泽。煤的新鲜断面的反光能力。与煤成因、煤岩成分、煤化程度和风化程度有关。镜煤→亮煤→暗煤→丝炭,光泽减弱。随煤级增高,光泽增强。

③反射率、折射率和吸收率

煤的反射率是在垂直照明条件下,煤岩组分磨光面的反射光强度与入射光强度之比。

煤的折射率是在光线入射煤的界面时,入射角和折射角的正弦之比。

煤的吸收率是被吸收的光能与入射光能量之比。

2、机械性质

①硬度。抵抗硬物压入表面的能力,分为刻划硬度、压痕硬度和磨损硬度。

刻划硬度指用标准矿物刻划煤得到的相对硬度。

压痕硬度指用专门的仪器测定的煤的显微硬度。

抗磨硬度指用煤磨光面上耐磨阻力的大小表示的硬度。

②脆度。物体受外力作用后破碎的性质。脆度大,韧性差,与硬度不直接相关。焦煤脆度最大。

③可磨性。研磨的难易程度。煤的可磨性系数指风干状态下将相同重量的标准煤样和试验煤样由相同粒度研磨到相同细度所消耗的能量比。

④压缩性。煤在恒温加压下体积变化的百分数。

⑤断口。煤受力后断开的截面。

⑥比重、密度。

⑦比表面积。每克煤具有的总表面积。M2/g

可采用湿润法、BET法、Langmuir等温吸附法、气相色谱法。褐煤和无烟煤比表面积最大。

⑧孔隙率。煤中孔隙和裂隙总体积与煤总体积之比,又称孔隙度。

⑨导电性。通常用电阻率表示。与煤化程度、水、矿物质、孔隙度和风化程度有关。

⑩磁性。煤是抗磁性物质。

⑾导热性。煤的比热介于水和矿物之间。水比热大,矿物比热小。

三、煤中的裂隙

1、内生裂隙:凝胶化物质在温度、压力作用下均匀收缩产生内张力而形成的裂隙。与层理面垂直发育两组。

2、外生裂隙:后期构造应力作用的产物,与层理面呈不同角度相交,裂隙内有煤屑。

四、煤的结构与构造

1、煤的结构分为原生结构和次生结构。原生结构指煤化作用过程中未经构造运动作用形成的煤结构。次生结构指煤层遭受构造运动后的结构,包括碎裂、碎粒、縻棱结构。

2、煤的构造

煤作为一种沉积岩,具有沉积构造,包括层理、波痕等;有些不具有层理特征,呈块状构造。原生构造经构造运动后产生次生构造,如滑动镜面、鳞片状构造、揉皱构造等。

第二节 煤的显微组成

一、煤的有机显微组分

1、镜质组。由植物的木质纤维组织在还原条件下经凝胶化作用形成。镜质组分为结构镜质体、无结构镜质体和碎屑镜质体。保存有植物细胞结构的称为结构镜质体,没有植物细胞结构的称为无结构镜质体,呈碎屑状分布的称为碎屑镜质体。

2、惰质组。又称丝质组,是木质纤维组织在氧化环境下经丝炭化作用形成。C含量高,芳构化程度高,较硬,反射率高,挥发分低,无粘结性。

3、壳质组。又称稳定组,类脂组。壳质组还有大量脂肪族成分,氢含量高,加热时产生大量的焦油和气体。粘结性较差或没有,具有荧光性。

二、煤的无机显微组分

1、煤中矿物质来源

①原生矿物。植物通过根吸收的矿物质。

②同生矿物。由风、水携带与泥炭同时沉积的矿物质。

③后生矿物。煤层形成后,由于水或岩浆的侵入形成于煤体内的矿物。

2、煤中矿物质种类

粘土矿、碳酸盐矿、氧化物、硫化物、氢氧化物等。

第三节 煤岩学应用

1、根据煤层剖面、生物化石、煤核可以推断煤层沉积史。

2、根据煤层形成曲线可以推断沉积历史。

3、利用同等深度不同变质程度可以推断构造运动史。

第四节 煤岩学研究方法

一、宏观研究方法

肉眼观察煤层剖面,绘制煤岩柱状图,描述分层名称、厚度、结构、构造、矿物质等。

二、显微研究方法

1、显微煤岩组分定量

煤粒d≤1mm,平均d=0.8mm

2cm 颗粒数约为25×25=625

2cm

测量步距0.6mm时,测量点数是33×33=1089。统计原则:以目镜十字丝交点下组分进行统计,十字丝交点下没有显微组分的不统计。判断原则:如果十字丝交点落在组分边界时,按充满某个象限的组分参与统计。

2、显微煤岩类型定量

目镜插入网格微尺,网格数20,网格尺寸0.5mm×0.5mm,测量步距0.6mm。统计原则:网格与煤粒交叉点数在10个以上时参与统计。数据点的判断原则:①矿物点数<20%且无硫化物时,该数据点定为显微煤岩;②矿物点数>50%或硫化物点数>15%重叠点数时,该点定为矿物体;③其它数据点定为微矿质煤。

3、显微组分和显微煤岩类型综合分析

在目镜中插入网格微尺,以网格微尺某一点作为十字丝,综合前面的统计和判断依据进行统计和分析。

三、煤的反射率测定

显微光度计

四、仪器设备

1、自动显微光度计

根据灰度值计算出反射率,判断煤化程度、显微组分或煤岩类型。

2、扫描电子显微镜:用于研究固体的表面形态。

3、核磁共振:特定的原子核在特定的外加磁场中,只吸收特定频率的射频能量。用于研究煤分子的化学结构。芳香度改变,相当于外加磁场改变,被吸收的射频频率也改变。

4、电子顺磁共振

第五章 含煤沉积体系

1、 含煤岩系的概念

是指充填于盆地内含有煤层的具有共生关系的沉积总体。含煤岩系的颜色主要由灰色、灰绿色和黑色组成,岩石类型包括砂、泥岩、炭质泥岩、灰岩、煤等。

2、 煤层形成的条件

煤层的前身是泥炭层,泥炭层的形成和保存与沼泽中的水位密切相关,根据植物遗体的堆积速度和沼泽水面的上升速度对比,可分为三种情况,又称为三种补偿方式:过度补偿、均衡补偿和欠补偿。

3、 煤层的结构

煤层包含煤分层和岩石夹层,煤层内不含夹石层者称为简单结构煤层,煤层内含夹石层者称为复杂结构煤层。

4、 煤层的底板和顶板

煤层底板以泥岩、粘土岩最为常见,富含植物根茎化石,俗称根土岩;如果底板为砾岩或石灰岩,则为植物遗体异地沉积。根土岩含有伊利石、蒙脱石、高岭石和其他粘土矿物,呈灰白色。

煤层顶板的岩石类型有多种,最常见的是泥岩、砂岩和石灰岩,与沉积环境有关。例如,我国华北石炭二叠纪含煤岩系太原组是海进型充填序列,成煤环境主要为泻湖-障壁岛体系,发育石灰岩顶板。华北地区山西组为海退型充填序列,成煤环境主要为三角洲、河流体系,煤层顶板为湖相泥岩、冲击相砂岩。

5、 煤层中的结核、包体和化石

顶板为海相沉积物的煤层,煤层中、顶部常见黄铁矿结核,煤层下半部常见硅质结核。

泥炭中混入外来漂砾,形成包体。

煤层中有时可见到动植物化石。

6、 煤层厚度、形态及其控制因素

煤层总厚度、有益厚度、可采厚度、可采煤层、厚度级别

煤层形态控制因素:泥炭沼泽基底形状、沉积环境(冲积扇、河流、湖泊、三角洲、泻湖-障壁岛)、同期构造变动(河流或湖泊相碎屑沉积体侵入煤层产生煤层分叉现象、基底发生断裂、褶皱)、后期构造变动(褶皱、断裂、岩浆侵入、岩溶陷落柱)

7、 含煤沉积体系

山地冲积扇地带沉积体系成煤特征:扇间、扇内或扇前盆地可形成煤层,侧向连续性差

河流沉积体系成煤特征:岸后沼泽和废弃河道有利于形成煤层

湖泊沉积体系成煤特征:湖泊淤浅过程中,沉积粒度下细上粗

三角洲沉积体系成煤特征:上三角洲平原地带,近河岸由于决口扇沉积而出现煤层分岔和灰分增高现象,多形成低硫煤;下三角洲平原,受海水和潮汐影响明显,煤层顶板多为海相沉积,硫分含量高。

泻湖-障壁岛沉积体系成煤特征:泻湖淤浅沼泽化形成煤层,厚度变化较大,煤层硫分含量较高。

第六章 聚煤盆地与聚煤规律

1、根据聚煤盆地的形成条件,分为凹陷型聚煤盆地,断陷型聚煤盆地和构造侵蚀型聚煤盆地。

①我国华北石炭二叠纪聚煤盆地是一个比较典型的波状凹陷型聚煤盆地。盆地南侧是秦岭-大别山构造带,盆地北侧是阴山构造带,总体是一个西北向东南方向缓倾斜的簸箕状盆地,呈现“东西向分带,南北向迁移”的格局。

②断陷型聚煤盆地。由断裂作用和断块沉陷作用形成。

③侵蚀型聚煤盆地。基底为具有剥蚀面的凹地。

2、聚煤盆地的演化

①聚煤盆地的演化受古植物、古气候、古地理和古构造的影响。

②盆地内存在不均匀沉降现象。

③聚煤盆地在构造运动、海水进退和气候影响下,具有侧向迁移现象。

涉及的词汇:海进、海退、海退退覆、超覆、进积(海退时)、退积(海进时)、沉积基准面

3、聚煤规律

在古植物、古气候、古地理和古构造影响下,聚煤作用总是发生于盆地中的一定部位,在时空上表现出一定的规律性。

①富煤带。指煤层发育较好、相对富集的块段,在空间上具有带状分布的特点。

②富煤中心。富煤带内煤层厚度较大的部位。

一般情况下,大型盆地富煤带呈圆形或椭圆形,受地质构造控制时沿构造线延展方向展布。

4、成煤作用研究

受海水影响的煤中,硫含量高,黄铁矿含量高,富集云母、白云石、方解石和磷灰石等矿物。

具有海相顶板的煤层,由于是深水环境,暗煤发育。

第七章 煤的伴生矿产资源

第一节 油页岩

油页岩中的有机物质几乎完全由藻类遗体组成,油页岩的形成环境主要为静水沉积还原环境。

第二节 煤层气

矾土和粘土有什么不一样的?

1、智利铜矿丰富的地质原因:

智利的铜矿资源绝大多数集中分布在中部和北部地区,这里有一条斑岩铜矿化带,而在南部地区,铜矿资源分布不多。

斑岩铜矿属于品位较低而储量大的矿床类型,其产量目前占世界铜产量50%以上,是目前世界铜矿中最重要的矿床类型,它主要是由于陆地上的火山作用和侵入作用而成,岩浆的侵入导致了它周围的岩石发生蚀变,铜矿体一般就产生在侵入岩体的内部或与围岩的接触带上。

一般而言,这种类型的铜矿床主要分布于板块碰撞带或挤压断裂带,比如我国的郯城-庐江深断裂带(我国东部一条巨型断裂带,总体上呈南北走向,绵延2400多公里),斑岩铜矿就特别发育。智利的情况也类似,因为这个国家所处的地理位置恰恰是纳斯卡板块与南美洲板块的碰撞地带。

所以,简单地说,就是智力处于板块的碰撞地带。纳斯卡板块指的是南极洲板块中的小版块,而南美洲板块是美洲版块中的板块。

2、智利北部农业分布特点:呈点状和带状(沿河)分布 。

原因:该地主要为干燥的热带沙漠气候,在河谷地带和地下水比较丰富的安第斯山山麓容易形成绿洲农业。

扩展资料:

铜具有良好的导电性、导热性、耐腐蚀性和延展性等物理化学特性。导电性能和导热性能仅次于银,纯铜可拉成很细的铜丝,制成很薄的铜箔。由于铜具有优良性能,所以在工业上有着广泛的用途。包括电气行业、机械制造、交通、建筑等方面。

铜在电气和电子行业这一领域中主要用于制造电线、通讯电缆和其他成品如电动机、发电机转子及电子仪器、仪表等,这部分用量约占工业总需求量的一半左右。

甲酸钠的生产工艺

矾土和粘土根本就是两种物质, 他们没有什么一样的地方。

矾土 化学式Al2O3.H2O,Al2O3.3H2O和少量FE2O3.SiO2

一种氧化铝矿石。常因含有氧化铁而呈黄至红色,故又称“铁钒土”。为炼铝的主要原料。

矾土是矾土。根据其用途将其分为冶金级、化工级、耐火级、研磨级、水泥级等。被用于制造耐火材料,这种矾土被称为耐火级矾土。而AL2O3/Fe2O3和AL2O3/SiO2比例适当的矾土熟料,用于熔氧化铝·/Fe2O3和AL2O3/SiO2比例适当的矾土熟料,用于熔氧化铝·

粘土是含沙粒很少、有黏性的土壤,水分不容易从中通过才具有较好的可塑性。一般的粘土都由硅酸盐矿物在地球表面风化后形成。一般在原地风化,颗粒较大而成分接近原来的石块的,称为原生黏土或者是一次黏土。这种黏土的成分主要为氧化硅与氧化铝,色白而耐火,为配制瓷土之主要原料。

煤的物理性质

反应原理

制法:一氧化碳和氢氧化钠溶液在160~200℃和2MPa压力下反应生成甲酸钠,然后经硫酸酸解、蒸馏即得成品甲酸。

工艺流程简述

本工程使用焦炭为原料,经造气除尘、水洗、脱碳、再除尘等工艺,取得工艺所需的一氧化碳气体,再经加热加压与氢氧化钠反应生成甲酸钠溶液,后经蒸发、分离、干燥生成固体产品甲酸钠。各岗位的说明如下:

1、造气

将焦炭用电动葫芦提升至造气炉上部,从造气炉炉口加焦炭至炉内,焦炭在炉内与风机引(送)进的空气不充分燃烧产生一氧化碳、二氧化碳、氮气等混合气体。

主要反应方程式为:

C+O2--------CO2+Q

CO2+C-------2CO-Q

2C+O2--------2CO+Q

2、净化

从造气炉来的混合气体进入旋风除尘器出去混合气体夹带的大部分固体小颗粒,后进入洗气塔,洗气塔以水为洗涤液,进一步除去混合气体中的固体颗粒,再进入碱洗塔以氢氧化钠溶液为循环吸收液,脱除混合气体中的部分二氧化碳气体,再经旋液分离器分离出来气体夹带的水分进入静电除尘器,通过静电除去剩余的固体小颗粒,再次净化混合气体。

净化工序主要反应方程式:

CO2+2NaOH----------Na2CO3+H2O

CO2+NaOH------------NaHCO3

3、压缩

净化后的混合气体进入压缩机进行两段压缩,提压至2.0~2.2Mpa,经油水分离器进入混合器,与从预热器来的碱液混合,在一定温度和压力下,碱液与大部分二氧化碳气体反应,基本除去了二氧化碳,取得工艺所需的一氧化碳气体。

压缩工序主要反应方程式:

CO2+2NaOH----------Na2CO3+H2O

CO2+NaOH------------NaHCO3

4、合成

从上一工序来的一氧化碳气体和氮气加热至140~150度进入合成反应器,在合成反应器中一氧化碳与氢氧化钠反应生成甲酸钠溶液,甲酸钠溶液和氮气及微量一氧化碳气体等混合物经卸压后经入旋液分离器进行气液分离,甲酸钠溶液用泵打入储罐待用,混合气体排入大气。

合成工序主要反应方程式:

CO+NaOH--------HCOONa

CO2+2NaOH--------Na2CO3+H2O

5、蒸发分离

储罐内的甲酸钠溶液用泵输送到蒸发器,用油炉来的导热油加热,蒸发掉大部分水分,形成含量70~80%甲酸钠溶液,后用泵输送到离心机,离心机干得到5%左右的甲酸钠。

6、包装

离心后的甲酸钠溶液用热风吹到热风干燥器干燥,取得合格的甲酸钠产品,进行包装。 由于主产品是甲酸钠,一般认为该工艺是专业生产甲酸钠的工艺。 优点是:由于不含有其他醇类,生产甲酸收率高。该工艺纯度在97%以上的色度也比较好, 出口量较大。

生产厂家:东营顺通,山西平原等。 一种是传统生产新戊二醇的歧化工艺生产的。 优点:含新戊二醇高。由于价格低,颜色黑,大部分厂家提完新戊二醇后生产甲酸。 生产厂家:山东永流,山东东辰,淄博少华等。

另一种是歧化改进工艺生产的,又称为新戊二醇甲醇工艺。(国内,山东省化工研究院独自开发研制。在国际上,这也是我国独有技术。)优点:颜色白,含量高,且不宜结块,适用领域广。出口量大。生产厂家:济南艾孚特,山东康特维业。 一种是传统工艺生产的。优点:价格低,颜色淡**。 生产厂家:湖北宜化,瑞阳化工等。

一种是传统工艺生产的基础上提纯的。优点:颜色较白,含量高,出口量大。生产厂家:云天化。 S26In case of contact with eyes, rinse immediately with plenty of water and seek medical advice.不慎与眼睛接触后,请立即用大量清水冲洗并征求医生意见。

S37/39Wear suitable gloves and eye/face protection戴适当的手套和护目镜或面具。 R36/37/38Irritating to eyes, respiratory system and skin. 刺激眼睛、呼吸系统和皮肤。

石头的分类。有分

一、煤的物理性质

煤的物理性质主要包括5个方面,即光学性质、机械性质、空间结构性质、电磁性质和热性质,具体如颜色、光泽、反射率、折射率、吸收率,硬度、脆度、可磨性、断口,密度、表面积、孔隙度、压缩性,介电常数、导电性、磁性,比热、导热性等。煤的物理性质是煤的化学组成和分子结构的外部表现,受到煤化程度、煤岩组成和煤风化程度的影响。

1.颜色

煤的颜色是煤对不同波长可见光波吸收的结果。在不同的光学条件下,煤呈现不同的颜色。在普通白光照射下,煤表面反射光线所显示的颜色称为表色。腐植煤的表色随煤化程度的增高而变化,褐煤通常为褐色、褐黑色;低中煤化程度的烟煤为黑色,高煤化程度的烟煤为黑色略带灰色,无烟煤往往为灰黑色,带有铜**或银白色的色彩。因此,根据表色可以明显地区别出褐煤、烟煤和无烟煤。腐泥煤的表色变化较大,有深灰色、棕褐色,甚至灰绿色至黑色。煤中的水分能使颜色加深,而煤中的矿物质往往使煤的颜色变浅。

煤研成粉末的颜色称为粉色。它可用钢针刻划煤的表面或用镜煤在未上釉的瓷板上刻划条痕而得,粉色也称条痕色。煤的粉色一般略浅于表色。粉色较固定,用粉色判断煤的煤化程度效果较好。褐煤的粉色为浅褐色、褐色,低煤级烟煤为深褐色到黑褐色,中煤级烟煤为褐黑色,高煤级烟煤为黑色有时略带褐色,无烟煤为深黑色或灰黑色。腐泥煤的粉色一般比腐植煤要浅,随煤级的增高,粉色也逐渐加深。煤的粉色不但取决于煤化程度,还与煤岩类型和风氧化程度有关。为了统一对比条件,一般应以新鲜的较纯净的光亮型煤的粉色为准。

把煤磨成薄片(厚约0.03mm),用显微镜在普通透射光下观察,煤薄片显示出的颜色为透光色,又称体色。透光色是煤对不同波长可见光选择性吸收的结果。不同的煤岩组分具有不同的透光色,常见的有**、红色和黑色;同一煤岩组分在不同煤化阶段显示出不同的透光色。煤级越高,透光性越差,无烟煤几乎不透明。

把煤的表面磨光,用显微镜在普通反射光下观察,煤光面上显示出的颜色称为反光色。各种煤岩组分的反光色均呈灰至白调。不同的煤岩组分反光色不同,同一煤岩组分在不同煤化阶段反光色也不同。随煤化程度的增高,煤反光色逐渐变浅。

煤的磨光面用蓝光或紫外光激发而呈现的颜色,称为反射荧光色。反射荧光色随煤岩组分和煤化程度的不同而变化,有绿**、**、棕色等。随煤级增高,荧光减弱,至高煤级荧光消失。

2.光泽

煤的光泽是指煤新鲜断面的反光能力。光泽与煤的成因类型、煤岩成分、煤化程度和风化程度有关。腐泥煤的光泽一般都比较暗淡。腐植煤的4种宏观煤岩成分中,镜煤的光泽最强,亮煤次之,暗煤和丝炭的光泽暗淡。随着煤化程度的增高,各种宏观煤岩成分的光泽有不同程度的增强。丝炭和暗煤的光泽变化小,而镜煤和较纯净的亮煤变化明显。根据镜煤或较纯净亮煤的光泽可判断煤级,即年轻的褐煤无光泽,老褐煤呈蜡状光泽或弱的沥青光泽,低煤级烟煤具沥青光泽、弱玻璃光泽,中煤级烟煤具强玻璃光泽,高煤级烟煤具金刚光泽,无烟煤具半金属光泽。

3.反射率、折射率和吸收率

煤的反射率是在垂直照明条件下,煤岩组分磨光面的反射光强度与入射光强度之比,以百分率表示。随着煤化程度的增高,煤的反射率不断增强。油浸介质中,煤的最大反射率Romax=0.26%~11.0%,空气介质中煤的最大反射率Romax=6.40%~22.10%。当Cdaf≥85%时,反射率出现最大值和最小值,即双反射现象。随煤级升高,双反射逐渐增强(表5-1)。煤的反射率是确定煤化程度最重要的光学常数,它对煤质评价、煤加工利用、油气勘探等地质问题均有十分重要的意义。

表5-1 镜质组的反射率、折射率和吸收率

(据周师庸,1985)

煤的折射率是光线通过煤的界面时,在界面发生折射后进入煤的内部,其入射角和折射角的正弦之比。随着煤化程度的增高,煤的折射率也相应增高,从1.680增至2.02。在Cdaf≥85%后,折射率出现最大值和最小值,其差距随煤级增高而增大。

煤的吸收率一般比较小,随煤化程度的增高,煤的吸收率逐渐增大,从0.02增至0.39。当Cdaf≥92%后,吸收率出现最大值和最小值,其差值随煤级增高而增大。在高煤级阶段煤的分子结构中,芳香层状结构不断增大,排列越来越规则化,在平行和垂直于芳香层面两个方向的光学性质出现显著差异,即出现光学各向异性现象。

4.硬度

煤的硬度是指煤抵抗外来机械作用的能力。随着外加机械作用力的性质不同,煤的硬度表现形式也不一样。煤的硬度分为刻划硬度、压痕硬度和磨损硬度3类。

图5-1 煤的显微硬度与煤化程度的关系(据E.M.泰茨,1993)

刻划硬度是用标准矿物刻划煤所测定的相对硬度。宏观煤岩成分中,暗煤硬度最大,亮煤、镜煤硬度小。煤的硬度还与煤级有关,褐煤和中煤化程度的烟煤硬度最小,为2~2.5,无烟煤硬度最大,接近4。

显微硬度是压痕硬度的一种,可用专门仪器测定显微组分的硬度。测定是在显微硬度计上进行的。煤的显微硬度与煤化程度有关(图5-1)。年轻褐煤和中煤级烟煤的显微硬度最小,无烟煤的显微硬度最大,且上升的幅度很大。

抗磨硬度是磨损硬度的一种。它是用研磨阻力的大小来表示煤磨光面上显微组分或矿物的硬度,表现为显微组分或矿物的突起现象,是显微镜下鉴定标志之一。抗磨硬度与煤化程度有关,在低、中煤级煤中,丝炭比较硬,在磨光面上显示突起,而镜煤比较软,磨光面上不显突起,随着煤级的增高,镜煤与丝炭抗磨硬度逐渐接近,丝炭的突起变小,甚至消失。抗磨硬度还与煤中的矿物质、煤的裂隙、风氧化程度有关。石英、黄铁矿、菱铁矿增加,煤的抗磨硬度增大;煤中的裂隙增多或煤受风氧化,则使煤的抗磨硬度降低。

5.脆度和可磨性

煤的脆度是指煤受外力作用而破碎的性质,表现为抗压强度和抗剪强度。强度小者,煤易破碎,脆度大;反之,脆度小。脆度和硬度同属抵抗外来机械作用的性质,但受力性质不同,表现的形式也不一样,所以两者概念不同。丝炭的脆度大,硬度也大;镜煤的脆度大,但硬度小,暗煤的硬度大,脆度小。不同的宏观煤岩成分和类型,其脆度不同。腐泥煤和残植煤的脆度都较小,如我国抚顺的煤精,是一种腐植腐泥煤类,其脆性小、韧性好。煤的脆度还与煤化程度有关,中煤级的烟煤脆度最大,低煤级煤的脆度变小,无烟煤的脆度最小。

有人提出显微脆度的概念,它是在显微镜下根据金刚石压锥压入显微组分后,压痕产生裂纹的程度来测定,在一定静载荷下,每100个压痕中出现裂纹的压痕数来表示。数值越大,显微脆度越大。由图5-2可见,中煤级的焦煤显微脆度最大,随煤级的增高或降低,显微脆度变小。强还原煤比弱还原煤的脆度要大。

图5-2 显微脆度与煤化程度的关系(据И.И.Ammocob,1963)

煤的可磨性是指粉碎煤的难易程度,可用可磨性系数KHG来表示。可磨性越大的煤越易粉碎;反之,越难。测定煤可磨性的方法有许多种,我国和美、英、日、印等国均采用哈德格罗夫(Hardgrave)法,已作为国家标准。煤中各显微组分的KHG不同,其中丝质组最高,半丝质组其次,其后是镜质组,壳质组最低。它们随煤化程度而变化,但在中挥发分(Cdaf=90%附近)时都有一个最大值。

6.煤的压缩性

煤在恒温下加压,其体积变化的百分数,称为煤的压缩性。压缩性与煤化程度有关,煤化程度越高,压缩性越小。加压后丝质组体积变化极少,镜质组有变化,稳定组分变化最大,但到高煤级时,其压缩性比镜质组小。显微组分的压缩性随压力的增大而增加,壳质组变化最大,镜质组其次,惰性组最小。

7.断口

煤受外力打击后断开的表面,称为断口。断口不包括层理面或裂隙面。煤中常见的断口有贝壳状断口、阶梯状断口、参差状断口、棱角状断口、粒状断口等。断口反映了煤物质组成的均一性和方向性的变化。组成较均一的煤,如腐泥煤、腐植腐泥煤、镜煤等常具有贝壳状断口;而组成不均一的煤,常见其他类型的断口。

8.比重与密度

煤的比重是指20℃时煤的重量与同温度、同体积水的重量之比,用符号d2020表示。煤的密度是指单位体积煤的质量。比重和密度的数值相等,但物理意义不同。比重没有单位,而密度有单位。煤的比重与煤岩成分、煤化程度及煤中矿物质的性质和含量有关。

同一煤级的煤中,不同煤岩组分的真比重不同。丝质组的真比重最大,镜质组次之,壳质组最小。随着煤化程度的增高,各种煤岩组分的真比重逐渐接近。丝质组的真比重为1.35~1.80,镜质组为1.24~1.80,壳质组为1.12~1.80(图5-3;表5-2)。腐泥煤的比重明显低于腐植煤。

图5-3 煤岩组分真比重与煤化程度的关系(据杨起等,1979)

表5-2 煤岩组分在不同煤化程度时的真比重

注:V代表镜质组;E为壳质组;I为惰性组;Cdaf为干燥无灰基碳含量。(据白浚仁,1989,略修改)

镜质组在煤化程度较低时(Cdaf<85%)真比重随煤化程度的升高而逐渐减少,至Cdaf至85%~87%时,真比重为最小值(dtr=1.24)。过此点后,真比重又随碳含量的增加而增大。当Cdaf>90%以后,即到了无烟煤阶段,真比重急剧增加,从1.35一直上升至2.25(Cdaf=100%,石墨)。

煤中矿物的比重比煤岩组分大得多,如黏土矿物的比重为2.4~2.6,石英、方解石为3.7,菱铁矿为3.8,黄铁矿的比重为5.0等。因此煤中矿物对煤比重影响较大,随着矿物含量的增高,煤的比重也增大。但煤中矿物质的准确含量是很难测定的,所以要测得纯煤的真比重比较困难。有人研究,煤的灰分每增加1%,煤的真比重约增高0.01。因此,煤的真比重的近似值可用下式计算:

纯煤真比重=无水含灰煤的真比重-0.01×干燥煤的灰分

煤的视比重是计算储量的重要参数之一。由于煤中矿物质含量变化大,所以煤的视比重变化也大。在矿物质含量较低的情况下,褐煤的容重为1.1~1.2,烟煤的容重为1.2~1.4,无烟煤的容重为1.4~1.8。在地质勘探工作中,煤的容重要专门取样测定。

9.煤的表面积

(1)煤的润湿热

固体和液体接触时,如果固体分子和液体分子间的作用力大于液体分子之间的作用力,则固体可以被液体润湿;反之,则不能润湿。当煤被液体润湿时,由于煤分子和液体分子间的作用力大于液体分子间的作用力,故有热量放出,称为润湿热。润湿热的大小与液体的种类和煤的表面积有关。常用的液体是甲醇,它的润湿力强,作用快,几分钟内润湿热基本上可全部释放出来。据测试,润湿热与煤的表面积大致存在的对应关系是:0.42J的润湿热相当于1m2的表面积。

煤的润湿热与煤岩组分和煤化程度有关,镜质组的润湿热最大,次为丝质组,壳质组较小。

(2)煤的表面积

煤的表面积包括外表面积和内表面积两部分,但外表面积所占比例极少,主要是内表面积。煤的表面积用比表面积表示,即每克煤所具有的表面积,单位为m2/g,煤比表面积大小与煤的分子结构和孔隙结构有关。

煤中孔径小于10nm的微孔的比表面积在总比表面中占有的比例最大。测定煤的比表面积有各种方法,如润湿法、BET(三位物理、化学家名字的缩写)法、微孔体积法、吸附法和气相色谱法等。用不同方法测量比表面积的结果不同,通常CO2作吸附质,采用吸附法测量比表面积,其结果为:长焰煤90m2/g、气煤50~70m2/g、肥煤10~20m2/g、焦煤20~120m2/g、瘦煤80~130m2/g、贫煤90~130m2/g,而无烟煤最高可达287m2/g。

煤的比表面积与瓦斯吸附量呈正比关系,比表面积大,瓦斯吸附量也大。煤的比表面积对研究煤层中的瓦斯含量和瓦斯突出、研究煤在气化时的化学反应性都具有实际意义。

10.孔隙率

煤中毛细孔和裂隙之总体积与煤的总体积之比称为煤的孔隙率或孔隙度,也可用单位重量煤包含的孔隙体积(cm3/g)表示。

煤的孔隙率可以根据煤的真比重和视比重,用计算求得,因为氦分子能充满煤的全部孔隙,而水银在不加压条件下完全不能进入煤的孔隙,故用下式可求出煤的孔隙度:

煤地质学

式中:d氦和d汞为用氦和汞测定的煤的密度,g/cm3。

煤孔隙率的大小与煤级有关(表5-3),褐煤的孔隙率高,为15%~25%,无烟煤的孔隙率也较高,约为5%~10%,而低中煤级烟煤的孔隙率较低,为2%~5%。煤的孔隙率与显微煤岩组分和煤中矿物质含量有关。相同煤级的煤,孔隙率可有相当大的波动范围。

表5-3 孔隙率与煤化程度的关系

煤中孔隙的大小并不是均一的。在煤矿的瓦斯研究工作中,煤中的孔隙大小一般分为三级,即大孔、过渡孔和微孔。大孔的孔径一般大于100nm,中孔的孔径为100~10nm,微孔的孔径小于10nm。

在大孔中,甲烷气体可以产生层流或者紊流渗透,煤中大孔的分布直接影响到煤中瓦斯运移的能力,在过渡孔中,可以产生毛细管凝结、物理吸附及扩散现象,它影响到煤层储藏瓦斯的能力,微孔则被甲烷分子充满,形成类似于固溶体的形式。

11.煤的导电性

煤的导电性是指煤传导电流的能力,通常以电阻率表示。煤的导电性与煤化程度、煤中的水分、煤中矿物质的性质和含量、煤岩成分,以及煤的孔隙度、风化程度等有关。

褐煤的孔隙度大,含水多,并有溶于水中的腐植酸离子,所以褐煤的导电性好,电阻率小,属于水溶液离子导电。烟煤是不良导体,电阻率大,高煤级的烟煤至无烟煤,电阻率迅速减小,煤的导电性大大增强,无烟煤为良导体,属于自由电子导电。褐煤的电阻率变化于10~200Ω·m之间,低中煤级烟煤的电阻率ρ=4000~5000Ω·m,高煤级烟煤的电阻率ρ=1000~10Ω·m,无烟煤的电阻率ρ=10~0.0001Ω·m。

低中煤级的煤中,镜煤、亮煤比暗煤和丝炭的导电性差;但在高煤级烟煤和无烟煤中,情况相反,镜煤、亮煤的导电性比暗煤好。

煤的导电性与煤中矿物的性质和数量有关。一般烟煤的电阻率随矿物含量的增高而变小,而无烟煤则相反,电阻率随矿物含量的增高而增大。但煤中含黄铁矿时,则电阻率会显著降低。煤的电阻率还与煤的层状构造有关,沿层理面煤的电阻率较小,垂直层理面方向煤的电阻率较大。当煤遭受风氧化时,电阻率明显下降。

12.磁性

物体置于磁场内,和磁场相吸者称顺磁性物质,和磁场相斥者称抗磁性物质。抗磁性物质,其内部结构的原子或分子具有闭合的电子外层,即电子都已成对;顺磁性物质,其电子层上尚有未配对的电子。煤属于抗磁性物质。

物质置于磁场内,由于其原子核吸收了磁场能,引起物质相对于磁场的自旋方向发生变化,这就是物质的核磁共振。煤的核磁共振是煤的重要磁性质之一。

在一高斯磁场下,1g物质所呈现的磁化率称物质的抗磁性磁化率或单位质量磁化率。煤的抗磁性磁化率随煤化程度的增高而增高。但在煤的Cdaf=80%~90%的区间内,抗磁性磁化率增高缓慢;当煤的Cdaf>90%以后,煤的磁化率剧增。

煤的抗磁性和煤的核磁共振是研究煤结构的有效方法。

13.导热性

煤作为燃料或者进行干馏、气化、液化都需要考虑到煤的导热性。

煤的比热是指1g质量的煤,温度变化1℃所需(释放)的热量(即热容)与水的热容(15℃的水)的比值。水的热容为4.18J/g(15℃),故煤的比热和热容在数值上是一致的。比热没有单位,室温下煤的比热为0.2~0.4。煤的比热有一定的波动范围,这是因为煤是复杂的有机高分子物质,并含有无机矿物质和水。煤的比热除受煤的煤化程度影响外,还受非煤物质及其含量的影响。

煤的比热随煤中水分的增加而呈直线增大,这是因为水的比热比煤大得多。无机矿物质的比热较小,一般约0.19,故煤的灰分增高,则煤的比热下降。煤的比热还受温度影响,测定温度升高,煤的比热增大。

煤的导热性是煤加工利用时重要的物理性质。煤的导热性与煤的孔隙率及孔隙中的气体有关,还与煤级及煤中无机矿物质有关。随煤化程度的增高,煤的导热性增强。

二、煤的裂隙

煤的裂隙是指煤受到自然界各种应力作用而造成的裂开现象。按成因不同可分为内生裂隙和外生裂隙两种。

1.内生裂隙

内生裂隙是在煤化过程中,煤中的凝胶化物质受到温度和压力等因素的影响,体积均匀收缩产生内张力而形成的一种张裂隙。

内生裂隙主要出现在镜煤中,有时也出现在均匀致密的光亮型煤分层中。内生裂隙一般都垂直或大致垂直于层理面,只发育在镜煤或光亮煤条带或分层内。内生裂隙面较平坦光滑,有时可见到十分细密的环纹组成的眼球状张力痕迹。内生裂隙有大致互相垂直的两组,其中,一组较发育,称为主要裂隙组;另一组则较稀疏,称为次要裂隙组(图5-4)。

图5-4 煤的内生裂隙示意图

内生裂隙的发育程度与煤化程度有关。中煤化阶段的焦煤、高煤化阶段的瘦煤内生裂隙最发育,5cm内约有30~60条(主要裂隙组);而低煤阶的长焰煤、气煤或高煤阶的贫煤则减少,5cm内为10~20条;无烟煤和褐煤中内生裂隙很少或没有。褐煤由于失水,常常有切穿煤岩成分或层理的干缩裂纹。所以,可根据煤的内生裂隙发育程度来大致判断煤的煤化阶段。观察煤的内生裂隙时,要在打开的镜煤层理面上观察,而在垂直层理的断面上往往看不清楚。

2.外生裂隙

外生裂隙是在煤层形成之后,受构造应力的作用而产生的。外生裂隙可出现在煤层的任何部分,与煤层的层理呈不同角度相交,并切穿煤岩成分和煤分层的层理。外生裂隙面上常有波状、羽毛状或光滑的滑动痕迹,有时可见到次生矿物或破碎的煤屑。外生裂隙面有时与内生裂隙面重叠。

在矿井下,要经常注意测量外生裂隙方向,这对判断断层有一定的帮助。研究外生裂隙的方向,对提高采煤效率、预测瓦斯突出也有实际意义。

三、煤的结构和构造

1.煤的结构

煤的结构是指煤岩成分的形态、大小、厚度、植物组织残迹,以及它们之间相互关系所表现出来的特征,它反映了成煤原始物质的成分、性质及在成煤时和成煤后的变化。在低煤级煤中,煤的结构很清楚;随着煤化程度的增高,各种煤岩成分的性质逐渐接近,因而煤的结构就逐渐变得均一。

煤的结构分原生结构和次生结构两种。

(1)原生结构

煤的原生结构是指由成煤原始物质及成煤环境所形成的结构。常见的原生结构有以下8种:

1)条带状结构:煤岩成分呈条带状相互交替出现。按条带的宽窄,可分为宽条带状结构(条带宽大于5mm)、中条带状结构(条带宽3~5mm)和细条带状结构(条带宽1~3mm)。条带状结构在烟煤的半亮型煤和半暗型煤中最为常见,年轻褐煤和无烟煤中条带状结构不明显。

2)线理状结构:指镜煤、丝炭、黏土矿物等以厚度小于1mm的线理断续分布于煤中,形成线理状结构。半暗型煤和半亮型煤中常见。据线理之间交替的线距,又可分为密集线理状结构和稀疏线理状结构。

3)凸镜状结构:指镜煤、丝炭、黏土矿物、黄铁矿等,常以大小不等凸镜体形式散布于煤中,构成凸镜状结构。半暗型和暗淡型煤中常见,有时光亮型煤中也可见到。

4)均一状结构:指组成成分较单纯、均匀,形成均一状结构。如镜煤、腐泥煤、腐植腐泥煤类等,都具有均一状结构。光亮型煤和暗淡型煤有时也表现出均一状结构。

5)粒状结构:由于煤中散布着大量的孢子或矿物杂质,使煤呈现出粒状结构。多见于暗煤或暗淡型煤中。有时含黄铁矿鲕粒或含黄铁矿结核而呈鲕粒状结构或豆状结构,它们为粒状结构的变种。

6)叶片状结构:煤中有大量的木栓层或角质层,使煤呈现纤细的页理,如叶片状、纸片状等,煤易被分成薄片。角质残植煤和树皮残植煤具有叶片状结构。

7)木质状结构:煤中保存了植物茎部的木质纤维组织的痕迹,植物茎干的形态清晰可辨,称木质状结构。褐煤中常可见到木质状结构,有些低煤级烟煤中也可见到。如我国山西繁峙褐煤中保存有良好的木质状结构而被称为“紫皮炭”。

8)纤维状结构:为丝炭所特有,它是植物根茎组织经丝炭化作用而形成的,可见到植物原生的细胞结构沿着一个方向延伸呈现出纤维状,疏松多孔。观察时要在煤层层面的丝炭上才可见到。

(2)次生结构

煤的次生结构是指煤层形成后受到应力作用产生的各种次生的宏观结构。

1)碎裂结构:煤被密集的次生裂隙相互交切成碎块,但碎块之间基本没有位移,可看到煤层的层理。碎裂结构往往位于断裂带的边缘。

2)碎粒结构:煤被破碎成粒状,主要粒级大于1mm。大部分煤粒由于相互位移摩擦失去棱角,煤的层理被破坏,碎粒结构往往位于断裂带的中心部位。

3)糜棱结构:煤被破碎成很细的粉末,主要粒级小于1mm。有时被重新压紧,已看不到煤层的层理和节理,煤易捻成粉末。糜棱结构一般出现在压应力很大的断裂带中。

2.煤的构造

煤的构造是指煤岩成分空间排列和分布所表现出来的特征。它与煤岩成分自身的特征(形态、大小等)无关,而与成煤原始物质聚积时的环境有关。煤的原生构造分为层状构造和块状构造。

(1)层状构造

沿煤层垂直方向上可看到明显的不均一性,主要是由组成成分不同而引起的,或是煤岩成分的变化,或含无机矿物夹层所引起,表现为层理。

按层理的形态,可分为水平层理、波状层理和斜层理等。水平层理(连续状、不连续状)反映泥炭沼泽内成煤原始物质是在平静的环境中几乎没有水流动的条件下沉积形成的。波状层理(不连续状、水平波状、凸镜状)反映植物堆积时沼泽内的水介质有微弱的运动。斜层理则反映水介质有强度较大的定向流动的堆积环境。

(2)块状构造

煤的外观均一,看不到层理。主要是成煤物质相对均匀,在沉积环境稳定滞水的条件下形成。腐泥煤、腐植腐泥煤及一些暗淡型腐植煤具有块状构造。

由于构造变动,使煤产生次生构造,如滑动镜面、鳞片状构造、揉皱构造等。次生构造可改变或破坏煤的原生构造。次生构造与构造变动有关,对煤层进行观察和描述时应加以注意。

石头有17个分类,分别是氟石、孔雀石、芙蓉石、木化石、黑云母片石、腊石、鱼鳞石、英石、菊花石、户县石、龟纹石、灵壁石、昆山石、宣石、砂片石、千层石、鹅卵石。

其具体属性、地区介绍如下:

1、氟石

又称软水紫晶、软水绿晶、萤石。石色为黄、绿、蓝、紫等。具有玻璃光泽,加热时有萤光吊现,破碎后的石渣可作为过滤器中的滤材。在工业生产中常用作冶炼金属辅料和制造氟化物,也可以加工成低档玉石。产地为浙江金华、江西德安、河北隆化。

2、孔雀石

实际为铜矿的尾矿石,色泽碧绿且具有光泽,石面上有如孔雀尾状的圆形图案,故而得名。其中的铜离子会缓慢溶于水中,有助于补充水草对铜的需要,但不可摆放过多或过大,以防止铜的过剩。

3、芙蓉石

别称样南玉、蔷薇石英。有玫瑰色、浅红色和白色。主要成分为二氧化硅。产于内蒙古、山西。

4、木化石

又称硅化石、树化石。1.5亿年前侏罗纪的树木经地壳运动及火山灰的埋没,演变成的化石。有灰色、黄褐色、褐色和黑色等。

木化石在水族箱中更可以淋漓尽致地表现出历史的沧桑,木化石本身原是有机物,经过亿万年的演变而成为无机物,其外形仍保留着树木的轮廓,甚至可以从断面处清晰地看出年轮,是任何别的岩石所不能比拟的。

木化石在水族箱是一种不可多得的珍贵石料,产于我国辽宁和浙江。

5、黑云母片石

是云母的矿石,黑色具有丝光。主要成分为黑云母,同黏土岩、粉砂岩或中、酸性火山岩组成。结构致密、细腻。全国各地均有分布。

6、腊石

由酸性火山岩和凝灰岩组成,质地似玉,有**、浅**和白色。我国江南地区均有分布。

7、鱼鳞石

又称虎皮石、松皮石。色泽为青灰、青绿、黄红以及多色相杂,带布白色斑点和洞眼。产于浙江长兴县。由石灰岩组成,不宜在水族箱中使用。

8、英石

灰黑至黑色,内有白色或灰色条纹。因产于广东英德而得名,亦称英德石。

9、菊花石

在白色、灰色或暗紫色的石面上有菊花形的花纹。产于湖南浏阳。

10、户县石

褐色,石形古怪为石玩珍品。产于陕西户县。

11、龟纹石

又名风化石。由各种碎石聚合而成,色彩相杂,沟纹纵横。主要由石炭岩组成,其中的钙会慢慢涂人水中,使水质变硬。因此不宜在水族箱中使用。但可用于非洲水草造景中。产于四川重庆歌乐山、涂山。

12、灵壁石

又称罄石。冈石质坚硬,敲击进声音清脆悦耳而得名。有黑、白、绿、褐等色,属大理石类。产于安徽灵璧县磐石山。

13、昆山石

石质呼硬,具有沟纹和小孔。有黄、白两种颜色。产于江苏昆山县马鞍山。

14、宣石

白色有光泽。石质坚硬有沟纹。产于安徽宣城。

15、砂片石

又称砂积石。石色为灰、黄、绿等色。石质坚硬,有沟纹洞孔,呈片状。产于川西。

16、千层石

青黑色与白色片状岩石相间重叠,石质坚硬。产于江苏太湖。

17、鹅卵石

具有各种颜色。产于全国大大小小的河道中,可用于非洲式水草造景。

百度百科-石头